5 Simple Statements About البيانات الضخمة Explained
الذكاء الاصطناعي التحول الرقمي: الذكاء الاصطناعي في التعليم وأثره المستقبلي
وهذا يشمل أماكن مثل الهواتف الذكية والأجهزة الداخلية ومحادثات الوسائط الاجتماعية وبيانات مؤشر الأسهم وبيانات من المعاملات المالية.
يتم إنشاء البيانات بنص عادي بحيث يمكن استخدام أدوات تحرير النص المختلفة لرسم رؤى قيمة.
أما بالنسبة لنوعية البيانات الضخمة، فهي تشمل مجموعة متنوعة من الأشكال والأنماط. يمكن أن تكون البيانات الضخمة نصوصًا، وصورًا، ومقاطع فيديو، وملفات صوتية، ومستندات إلكترونية، وسجلات مستخدمين، والمزيد.
جمع واستخدام البيانات الضخمة تواجه تحديات قانونية مهمة، وفيما يلي بعض هذه التحديات:
البيانات الضخمة غير المنظمة هي نوع البيانات التي لا تلتزم بأي مخطط أو مجموعة قواعد محددة.
الحجم الضخم: تتميز البيانات الكبيرة بحجمها الهائل، حيث يمكن أن تصل إلى مئات التيرابايتات أو حتى بيتابايتات من البيانات.
تتميز البيانات الضخمة بثلاثة سمات رئيسية وهي الحجم الكبير للبيانات المتاحة، وسرعة تدفقها وتجديدها، وتنوعها في الأشكال والأنماط.
مع تزايد عدد الأشخاص الذين يستخدمون الإنترنت بشكل كبير ، لا تنام البيانات أبدًا.
ينشئ عالم البيانات خوارزميات التعلم الآلي التي ستكون قادرة على أتمتة النماذج التنبؤية ، أي للتنبؤ بالمعلومات الجديدة وتصنيفها تلقائيًا.
تحليل البيانات الضخمة والذكاء الاصطناعي يرتبطان بشكل وثيق، حيث يعتبر الذكاء الاصطناعي أداة قوية لاستخلاص المعرفة والإفادة من البيانات الضخمة.
استخدام البيانات الضخمة لتدريب نماذج التعلم الآلي لتحليل الصور والفيديو وتعرف على الأنماط والمعلومات الهامة فيها.
تعتبر البيانات الضخمة جزءًا أساسيًا من مجالات مثل علوم البيانات، والذكاء الاصطناعي، نون والتحليل التنبؤي.
كما أن تكامل البيانات ، وضمان مراقبة الجودة ، وتوفير حوكمة البيانات وتجهيزها للأدوات التحليلية للقيام بعملهم هي أيضًا معايير ضرورية.